A Jak1/2 inhibitor, baricitinib, inhibits osteoclastogenesis by suppressing RANKL expression in osteoblasts in vitro

نویسندگان

  • Kohei Murakami
  • Yasuhiro Kobayashi
  • Shunsuke Uehara
  • Takako Suzuki
  • Masanori Koide
  • Teruhito Yamashita
  • Midori Nakamura
  • Naoyuki Takahashi
  • Hiroyuki Kato
  • Nobuyuki Udagawa
  • Yukio Nakamura
چکیده

The Janus kinases (Jaks) are hubs in the signaling process of more than 50 cytokine or hormone receptors. However, the function of Jak in bone metabolism remains to be elucidated. Here, we showed that the inhibition of Jak1 and/or Jak2 in osteoblast-lineage cells led to impaired osteoclastogenesis due to the reduced expression of receptor activator of nuclear factor-κB ligand (RANKL). Murine calvaria-derived osteoblasts induced differentiation of bone marrow cells into osteoclasts in the presence of 1,25-dihydroxyvitamin D3 (1,25D3) and prostaglandin E2 (PGE2) in vitro. However, treatment with the Jak1/2 inhibitor, baricitinib, markedly inhibited osteoclastogenesis in the co-culture. On the other hand, baricitinib did not inhibit RANKL-induced osteoclast differentiation of bone marrow macrophages. These results indicated that baricitinib acted on osteoblasts, but not on bone marrow macrophages. Baricitinib suppressed 1,25D3 and PGE2-induced up-regulation of RANKL in osteoblasts, but not macrophage colony-stimulating factor expression. Moreover, the addition of recombinant RANKL to co-cultures completely rescued baricitinib-induced impairment of osteoclastogenesis. shRNA-mediated knockdown of Jak1 or Jak2 also suppressed RANKL expression in osteoblasts and inhibited osteoclastogenesis. Finally, cytokine array revealed that 1,25D3 and PGE2 stimulated secretion of interleukin-6 (IL-6), IL-11, and leukemia inhibitory factor in the co-culture. Hence, Jak1 and Jak2 represent novel therapeutic targets for osteoporosis as well as inflammatory bone diseases including rheumatoid arthritis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Treatment of OPG-deficient mice with WP9QY, a RANKL-binding peptide, recovers alveolar bone loss by suppressing osteoclastogenesis and enhancing osteoblastogenesis

Osteoblasts express two key molecules for osteoclast differentiation, receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG), a soluble decoy receptor for RANKL. RANKL induces osteoclastogenesis, while OPG inhibits it by blocking the binding of RANKL to RANK, a cellular receptor of RANKL. OPG-deficient (OPG-/-) mice exhibit severe alveolar bone loss with enhanced bone resorption. ...

متن کامل

alpha-Lipoic acid inhibits inflammatory bone resorption by suppressing prostaglandin E2 synthesis.

alpha-Lipoic acid (LA) has been intensely investigated as a therapeutic agent for several pathological conditions, including diabetic polyneuropathy. In the present study, we examined the effects of LA on osteoclastic bone loss associated with inflammation. LA significantly inhibited IL-1-induced osteoclast formation in cocultures of mouse osteoblasts and bone marrow cells, but LA had only a ma...

متن کامل

The ubiquitin-mediated degradation of Jak1 modulates osteoclastogenesis by limiting interferon-beta-induced inhibitory signaling.

Interferons (IFNs) have been shown to negatively regulate osteoclastogenesis. In a proteomic study to assess protein expression during osteoclastogenesis, we discovered that the expression level of Jak1 was significantly decreased during the early stage of osteoclast differentiation from mouse bone marrow macrophages (BMMs) upon stimulation with receptor activator of nuclear factor kappaB ligan...

متن کامل

Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals.

Osteoclasts develop from monocyte-macrophage lineage cells under the regulation of osteoblasts. Osteoblasts express two cytokines essential for osteoclastogenesis, macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-KappaB ligand (RANKL). Osteoblasts also produce osteoprotegerin (OPG), a decoy receptor for RANKL, which inhibits the interaction between RANKL and...

متن کامل

Donepezil prevents RANK-induced bone loss via inhibition of osteoclast differentiation by downregulating acetylcholinesterase

OBJECTIVE Donepezil, an inhibitor of acetylcholinesterase (AChE) targeting the brain, is a common medication for Alzheimer's disease. Interestingly, a recent clinical study found that administration of this agent is associated with lower risk of hip fracture independently of falling, suggesting its direct effect on bone tissues as well. AChE has been reported to be involved in osteoblast functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017